mirror of
https://github.com/Cian-H/Aconity_ML_Expt1.git
synced 2025-12-22 20:51:58 +00:00
134 lines
2.8 KiB
Plaintext
134 lines
2.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Data handling imports\n",
|
|
"import numpy as np\n",
|
|
"import pickle\n",
|
|
"import random\n",
|
|
"from tqdm.auto import tqdm\n",
|
|
"import optuna"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"storage_name = \"mysql+pymysql://root:Ch31121992@192.168.1.10:3306/optuna_db\"\n",
|
|
"study_name = \"Experiment 1\"\n",
|
|
"study = optuna.load_study(\n",
|
|
" study_name=study_name,\n",
|
|
" storage=storage_name,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df = study.trials_dataframe()\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df.dropna(inplace=True)\n",
|
|
"df.sort_values(by=\"value\", inplace=True)\n",
|
|
"df.drop(df[\"value\"].idxmax(), inplace=True)\n",
|
|
"df.drop(df[\"value\"].idxmax(), inplace=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"pd.options.plotting.backend = \"plotly\"\n",
|
|
"params = list(df.keys()[5:-1])\n",
|
|
"for p in params:\n",
|
|
" df.plot(x=p, y=\"value\", kind=\"scatter\", title=p)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"params = list(df.keys()[5:-1])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!poetry add tabulate\n",
|
|
"from tabulate import tabulate\n",
|
|
"print(\n",
|
|
" tabulate(\n",
|
|
" (x[0] for x in sorted(list(df.groupby(params)), key=lambda x: x[1][\"value\"].mean())),\n",
|
|
" headers = params,\n",
|
|
" tablefmt = \"grid\",\n",
|
|
" )\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for p in params:\n",
|
|
" df.plot(x=p, y=\"value\", kind=\"scatter\", title=p).show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|