Added more varied semantic loss functions

This commit is contained in:
2024-05-15 13:37:12 +01:00
parent 01127de4b3
commit 6600a79f71
3 changed files with 74 additions and 23 deletions

View File

@@ -1,22 +1,28 @@
def main():
LEARNING_RATE = 10e-5
def run_test(loss_func, version):
from .model import main as test_model
from . import semantic_loss
from lightning.pytorch.loggers import TensorBoardLogger
logger = TensorBoardLogger(
save_dir=".",
name="logs/comparison",
version=version,
)
test_model(lr=LEARNING_RATE)
# test_model(logger=logger, loss_func=loss_func, lr=LEARNING_RATE)
def main():
from . import semantic_loss
from torch import nn
logger = TensorBoardLogger(
save_dir=".",
name="logs/comparison",
version="cross_entropy",
)
test_model(logger=logger, loss_func=nn.functional.cross_entropy)
logger = TensorBoardLogger(
save_dir=".",
name="logs/comparison",
version="similarity_weighted_cross_entropy",
)
test_model(logger=logger, loss_func=semantic_loss.similarity_weighted_cross_entropy)
run_test(nn.functional.cross_entropy, "cross_entropy")
# run_test(semantic_loss.similarity_cross_entropy, "similarity_cross_entropy")
# run_test(semantic_loss.hasline_cross_entropy, "hasline_cross_entropy")
# run_test(semantic_loss.hasloop_cross_entropy, "hasloop_cross_entropy")
# run_test(semantic_loss.multisemantic_cross_entropy, "multisemantic_cross_entropy")
if __name__ == "__main__":

View File

@@ -1,6 +1,18 @@
import torch
def create_semantic_cross_entropy(semantic_matrix):
def semantic_cross_entropy(input, target):
ce_loss = torch.nn.functional.cross_entropy(input, target)
penalty_tensor = semantic_matrix[target.argmax(dim=1)]
abs_diff = (target - input).abs()
semantic_penalty = (abs_diff * penalty_tensor).sum()
return ce_loss * semantic_penalty
return semantic_cross_entropy
# NOTE: This similarity matrix defines loss scaling factors for misclassification
# of numbers from our QMNIST dataset. Visually similar numbers (e.g: 3/8) are
# penalised less harshly than visually distinct numbers as this mistake is "less
@@ -23,11 +35,41 @@ SIMILARITY_MATRIX = torch.tensor(
).to("cuda")
SIMILARITY_MATRIX /= SIMILARITY_MATRIX.sum() # Normalized to sum of 1
similarity_cross_entropy = create_semantic_cross_entropy(SIMILARITY_MATRIX)
def similarity_weighted_cross_entropy(input, target):
ce_loss = torch.nn.functional.cross_entropy(input, target)
penalty_tensor = SIMILARITY_MATRIX[target.argmax(dim=1)]
similarity = (target - input).abs()
similarity_penalty = (similarity * penalty_tensor).sum()
return ce_loss * similarity_penalty
# NOTE: The following matrix encodes a simpler semantic penalty for correctly/incorrectly
# identifying shapes with straight lines in their representation. This can be a bit fuzzy
# in cases like "9" though.
HASLINE_MATRIX = torch.tensor(
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
[False, True, False, False, True, True, False, True, False, True]
).to("cuda")
HASLINE_MATRIX = torch.stack([i ^ HASLINE_MATRIX for i in HASLINE_MATRIX]).type(
torch.float64
)
HASLINE_MATRIX += 1
HASLINE_MATRIX /= HASLINE_MATRIX.sum() # Normalize to sum of 1
hasline_cross_entropy = create_semantic_cross_entropy(HASLINE_MATRIX)
# NOTE: Similarly, we can do the same for closed circular loops in a numeric character
HASLOOP_MATRIX = torch.tensor(
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
[True, False, False, False, False, False, True, False, True, True]
).to("cuda")
HASLOOP_MATRIX = torch.stack([i ^ HASLOOP_MATRIX for i in HASLOOP_MATRIX]).type(
torch.float64
)
HASLOOP_MATRIX += 1
HASLOOP_MATRIX /= HASLOOP_MATRIX.sum() # Normalize to sum of 1
hasloop_cross_entropy = create_semantic_cross_entropy(HASLOOP_MATRIX)
# NOTE: We can also combine all of these semantic matrices
MULTISEMANTIC_MATRIX = SIMILARITY_MATRIX * HASLINE_MATRIX * HASLOOP_MATRIX
MULTISEMANTIC_MATRIX /= MULTISEMANTIC_MATRIX.sum()
multisemantic_cross_entropy = create_semantic_cross_entropy(MULTISEMANTIC_MATRIX)

View File

@@ -36,6 +36,9 @@ class TrainingWrapper(L.LightningModule):
def validation_step(self, batch, batch_idx):
self._forward_step(batch, batch_idx, label="val")
def configure_optimizers(self, optimizer=optim.Adam, *args, **kwargs):
_optimizer = optimizer(self.parameters(), *args, **kwargs)
def test_step(self, batch, batch_idx):
self._forward_step(batch, batch_idx, label="test")
def configure_optimizers(self, optimizer=optim.SGD, **kwargs):
_optimizer = optimizer(self.parameters(), **kwargs)
return _optimizer