mirror of
https://github.com/Cian-H/symbolic_nn_tests.git
synced 2025-12-22 22:22:01 +00:00
Switched loss in expt2 to smooth_l1
Switched from mse_loss to smooth_l1_loss to avoid exploding gradient and NaNs when using mse_loss.
This commit is contained in:
@@ -40,21 +40,21 @@ def test(train_loss, val_loss, test_loss, version, tensorboard=True, wandb=True)
|
||||
|
||||
|
||||
def run(tensorboard: bool = True, wandb: bool = True):
|
||||
from .model import unpacking_mse_loss
|
||||
from .model import unpacking_smooth_l1_loss
|
||||
from . import semantic_loss
|
||||
|
||||
test(
|
||||
train_loss=unpacking_mse_loss,
|
||||
val_loss=unpacking_mse_loss,
|
||||
test_loss=unpacking_mse_loss,
|
||||
version="mse_loss",
|
||||
train_loss=unpacking_smooth_l1_loss,
|
||||
val_loss=unpacking_smooth_l1_loss,
|
||||
test_loss=unpacking_smooth_l1_loss,
|
||||
version="smooth_l1_loss",
|
||||
tensorboard=tensorboard,
|
||||
wandb=wandb,
|
||||
)
|
||||
test(
|
||||
train_loss=semantic_loss.positive_slope_linear_loss,
|
||||
val_loss=unpacking_mse_loss,
|
||||
test_loss=unpacking_mse_loss,
|
||||
val_loss=unpacking_smooth_l1_loss,
|
||||
test_loss=unpacking_smooth_l1_loss,
|
||||
version="positive_slope_linear_loss",
|
||||
tensorboard=tensorboard,
|
||||
wandb=wandb,
|
||||
|
||||
@@ -61,15 +61,15 @@ def get_singleton_dataset():
|
||||
)
|
||||
|
||||
|
||||
def unpacking_mse_loss(out, y):
|
||||
def unpacking_smooth_l1_loss(out, y):
|
||||
_, y_pred = out
|
||||
return nn.functional.mse_loss(y_pred, y)
|
||||
return nn.functional.smooth_l1_loss(y_pred, y)
|
||||
|
||||
|
||||
def main(
|
||||
train_loss=unpacking_mse_loss,
|
||||
val_loss=unpacking_mse_loss,
|
||||
test_loss=unpacking_mse_loss,
|
||||
train_loss=unpacking_smooth_l1_loss,
|
||||
val_loss=unpacking_smooth_l1_loss,
|
||||
test_loss=unpacking_smooth_l1_loss,
|
||||
logger=None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
@@ -66,4 +66,4 @@ def positive_slope_linear_loss(out, y):
|
||||
slope_penalty = (torch.nn.functional.softmax(-m * 500.0) + 1).mean()
|
||||
|
||||
# Finally, let's get a smooth L1 loss and scale it based on these penalty functions
|
||||
return nn.functional.mse_loss(y_pred, y) * residual_penalty * slope_penalty
|
||||
return nn.functional.smooth_l1_loss(y_pred, y) * residual_penalty * slope_penalty
|
||||
|
||||
Reference in New Issue
Block a user